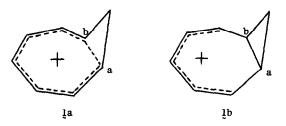
THE STRUCTURE OF THE HOMOTROPENYLIUM CATION

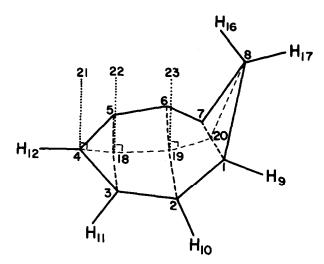

Robert C. Haddon*

Research School of Chemistry, Australian National University,

P.O. Box 4, Canberra, ACT 2600, Australia.

(Received in UK 20 January 1975; accepted for publication 31 January 1975)

In previous publications¹ we have used a perturbational approach based on frontier orbitals to investigate the phenomenon of homoaromaticity. One of the predictions arising from this study¹ concerned the length of the homoconjugate linkage (a-b) in such molecules as the homotropenylium cation (1). For this case, it was found that the attachment of the


pentadienyl cation to a cyclopropane ring (to give 1), leads to the removal of electron density from the a-b bond; hence a lengthening of the cyclopropane bond would be expected, leading to the Winstein² picture of an "open" cyclopropane unit (1a).

Recently, on the basis of <u>ab</u> <u>initio</u> calculations at the STO-3G level, Hehre³ has formulated homotropenylium as the bicyclo[5.1.0]octadienyl cation (<u>1b</u>). It is difficult to rationalise the physical properties of homotropenylium^{2,4-6} on the basis of structure <u>1b</u>, and for this reason we have re-investigated the equilibrium geometry of <u>1</u> using the MINDO/3 method⁷, with full geometry optimisation^{8,9}.

In Table I we report the MINDO/3 geometries for $\underline{1}$ which were obtained at two levels of optimisation: planar (all atoms were constrained to the plane of the sevenmembered ring, with the exception of the hydrogen atoms of the homoconjugate linkage, and the bridging methylene group³), and nonplanar. In addition the C-H bonds were set equal to 1.1 A° ; with these assumptions the planar case corresponds to the optimisation scheme used in the <u>ab initio</u> study³. In Table II we report the MINDO/3 energies¹⁰ (with and without C-H bond length optimisation), together with the STO-3G energies^{10,11} resulting from a single calculation on the structures derived from the MINDO/3 optimisation.

In the planar case, the <u>ab initio</u>⁵ and MINDO/3 structures are in good agreement, with the exception of the geometry around the homoconjugate linkage; of particular interest is the

^{*} Queen Elizabeth II Fellow, 1973-75.

Bond Lengths (a-b) ^a , Bond	c		
Angles $(\underline{a-b-c})^b$, Dihedral	STO-3G ^C Planar	MINDO/3 Planar	MINDO/3 Nonplanar
Angles (a-b-c-d; clockwise) ^b			-
1-7	1.512	1.579	1.621
1-2	1.471	1.465	1.449
2-3	1.361	1,380	1.387
3-4	1.438	1.416	1.412
1-8	1.510	1,502	1.498
<2-1-7	127.6	124.4	122.8
<1-2-3	128.5	131.8	133.9
<2-3-4	126.7	128.4	128.5
<3-4-5	134.5	130.9	129.5
<1-8-7	60.1	63.4	65.5
<8-20-19	103.0	115.7	117.9
<18-19-23	90	90	74.5
<4-18-22	90	90	84.1
<16-8-20	121.9	126.3	126.4
<17~8-20	121.4	124.3	124.2
<2-1-9	112.8	109.6	111.2
<1-2-10	114.6	112.3	112.5
<2-3-11	115.8	116.4	116.0
<12-4-21	90	90	98.1
<9-1-2-19	201.5	218.1	221.7
<10-2-1-20	90	90	156.9
<11-3-2-19	90	90	171.1

^a In angstroms. ^b In degrees. ^c Ref 3.

Table II. Calculated Energies for the MINDO/3 Geometries of the Homotropenylium Cation (1).

	MI	MINDO/3 STO-3G		
	∆Hf ^a -	Relative	Energies <u>a,b</u>	
Planar (C-H opt)	213.43	3.27	3.15	
Planar (C-H=1.1A°)	213.81	3.28	1.67	
Nonplanar (C-H opt)	210.16	0	-0.31	
Nonplanar (C-H=1.1A°)	210.53	0	-1.81	

^a Kcals/mole. ^b STO-3G energies are relative to the value of -304.19104 hartrees obtained by Hehre³.

homoconjugate bond length (0.07 A° longer with MINDO/3).

However, one of the most important findings to emerge from this study is the marked nonplanarity¹² of the sevenmembered ring in 1 (the deformation from planarity results in an energy gain of over 3 kcal/mole). Nonplanarity also leads to a lengthening of the homoconjugate bond length (by 0.04 A°) calculated with MINDO/3. This effect may be ascribed to the improved overlap between the $p\pi$ orbitals at the termini of the incipient pentadienyl cation and the highest occupied symmetric Walsh orbitals of cyclopropane^{1,4c,13}. The convex deformation induced in the sevenmembered ring and the out-of-plane bending of the C-H bonds, evidently operate in concert to facilitate this interaction.

Clearly the homoconjugate bond length¹⁴ found by the MINDO/3 method (1.621 A°, as against the calculated⁷ (free) cyclopropane bond length of 1.504 A°), and not necessarily contradicted by the <u>ab initio</u> method, is better accommodated in terms of structure <u>la</u> as opposed to <u>lb</u>. For this and other reasons^{1,2,4-6} it would seem premature to abandon the Winstein² picture of homoaromaticity in the homotropenylium cation and other similarly constituted species.

References and Notes

- 1. R.C. Haddon, Tetrahedron Lett., 2797, 4303 (1974)
- 2. S. Winstein, Quart. Rev., Chem. Soc., 23, 141 (1969)
- 3. W.J. Hehre, J.Amer.Chem.Soc., 94, 8908 (1972); 96, 5207 (1974)
- 4. NMR:
 - (a) J.L. Rosenberg, J.E. Mahler and R. Pettit, *ibid.*, <u>84</u>, 2842 (1962)
 - (b) C.E. Keller and R. Pettit, *ibid.*, <u>88</u>, 606 (1966)
 - (c) P. Warner, D.L. Harris, C.H. Bradley and S. Winstein, Tetrahedron Lett., 4013 (1970)
 - (d) J.F.M. Oth, D.M. Smith, U. Prange and G. Schröder, Angew. Chem., Intern. Ed. Engl., <u>12</u>, 327 (1973)

References and Notes (Continued)

- 4. (Continued)
 - (e) L.A. Paquette, M.J. Broadhurst, P. Warner, G.A. Olah and G. Liang, J.Amer.Chem.Soc., 95, 3386 (1973)
 - (f) G.A. Olah, J.S. Staral and G. Liang, ibid., 96, 6233 (1974)
 - (g) For a review see R.C. Haddon, V.R. Haddon and L.M. Jackman, Fortschr. Chem. Forsch., 16, 103 (1971)
 - (h) See also the discussion given by: P. Vogel, M. Saunders, N.M. Hasty, J.A. Berson, J.Amer.Chem.Soc., <u>93</u>, 1551 (1971)
- UV: P. Ahlberg, D.L. Harris, M. Roberts, P. Warner, P. Seidl, M. Sakai, D. Cook,
 A. Diaz, J.P. Dirlam, H. Hamberger and S. Winstein, J.Amer. Chem. Soc., 94, 7063 (1972)
- Diamagnetic Susceptibility Exaltation:
 H.J. Dauben, Jr., J.D. Wilson and J.L. Laity, in "Nonbenzenoid Aromatics", J.P. Snyder,
 Ed., Vol. II, Academic Press, New York, N.Y., 1971, p 167.
- R.C. Bingham, M.J.S. Dewar, D.H. Lo and C.A. Ramsden, papers in course of publication, J.Amer.Chem.Soc.
- 8. Using a gradient search procedure developed for MINDO/3 by M.J.S. Dewar, H.W. Kollmar, D.H. Lo, H. Metiu, P.J. Student and P.K. Weiner. The geometrical parameters are reliably calculated to high accuracy by this method (bond lengths to 0.001 A° and bond angles to 0.1 A°).
- Although we allowed the relaxation of the bisecting plane through 1, no favourable distortion of this kind could be found and the ion apparently has C_s symmetry.
- Calculations were carried out on the UNIVAC 1108 operated by the ANU Computer Center. Running times: 32 min for a full MINDO/3 optimisation of <u>1</u> in C_s symmetry (25 geometrical parameters); 35 min for a single STO-3G calculation.
- GAUSSIAN 70, W.J. Hehre, W.A. Lathan, R. Ditchfield, M.D. Newton and J.A. Pople, QCPE Program No. 236. The author is grateful to Dr L. Radom for supplying a copy of his version of this program.
- 12. Nonplanarity was originally suggested by Winstein and co-workers^{4C} on the basis of the coupling constants found from the pmr spectrum of <u>1</u>.
- 13. Professor R. Hoffmann, private communication, October, 1974. See also the discussion of this point by Hehre (ref 3).
- Apparently, the only known homoaromatic bond length, is the value of 1.65 A° found for the complex of tricyclo[4.3.1.0^{1,6}]deca-2,4-diene with chromium tricarbony1¹⁵, by X-ray crystallographic analysis¹⁶.
 See also refs 4c, f and h.
- W.-E. Bleck, W. Grimme, H. Günther and E. Vogel, Angew. Chem., Intern. Ed. Engl., 9, 303 (1970)
- 16. R.L. Beddoes, P.F. Lindley and O.S. Mills, ibid., 9, 304 (1970)